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J-MOD2: Joint Monocular Obstacle Detection and
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Abstract—In this work, we propose an end-to-end deep ar-
chitecture that jointly learns to detect obstacles and estimate
their depth for MAV flight applications. Most of the existing
approaches rely either on Visual SLAM systems or on depth es-
timation models to build 3D maps and detect obstacles. However,
for the task of avoiding obstacles this level of complexity is not
required. Recent works have proposed multi task architectures
to perform both scene understanding and depth estimation. We
follow their path and propose a specific architecture to jointly
estimate depth and obstacles, without the need to compute
a global map, but maintaining compatibility with a global
SLAM system if needed. The network architecture is devised
to jointly exploit the information learned from the obstacle
detection task, which produces reliable bounding boxes, and
the depth estimation one, increasing the robustness of both to
scenario changes. We call this architecture J-MOD2. We test the
effectiveness of our approach with experiments on sequences with
different appearance and focal lengths and compare it to SotA
multi task methods that perform both semantic segmentation and
depth estimation. In addition, we show the integration in a full
system using a set of simulated navigation experiments where a
MAV explores an unknown scenario and plans safe trajectories
by using our detection model.

Index Terms—Range Sensing, Visual Learning, Visual-Based
Navigation

I. INTRODUCTION

OBSTACLE avoidance has been deeply studied in robotics
due to its crucial role for vehicle navigation. Recently,

the demand for faster and more precise Micro Aerial Vehicle
(MAV) platforms has put even more attention on it. To
safely execute aggressive maneuvers in unknown scenarios,
the MAVs need a robust obstacle detection procedure.

Most fruitful approaches rely on range sensors, such as
laser-scanner, stereo cameras or RGB-D cameras [1], [2],
[3] to build 3D maps and compute obstacle-free trajecto-
ries. However, their use results in an increased weight and
power consumption, which is unfeasible for small MAVs.
Furthermore, their sensing range is either limited by device
characteristics (RGB-D and lasers) or by camera baselines
(stereo cameras).
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Fig. 1: Overview of the proposed system: the architecture is com-
posed by two networks that perform different, but connected tasks:
obstacle detection and pixel-wise depth estimation. The two task
are jointly learned and the feature extraction layers are in common.
Thus, the resulting model has increased accuracy in depth prediction
because of the semantic information received from the detector. On
the other hand, the detector learns a better representation of obstacles
through depth estimation.

Monocular Visual SLAM (VSLAM) approaches address the
above limitations by exploiting single camera pose estimation
and 3D map reconstruction [4], [5], [6], [7]. Nevertheless,
these advantages come with costs: the absolute scale is not
observable (which easily results in wrong obstacle distance
estimations); they fail to compute reliable 3D maps on low-
textured environments; the 3D map updates are slow with
respect to real-time requirements of fast manoeuvres. With
careful tuning, these approaches can be used for obstacle
avoidance.

At the same time there are other approaches that tackle
the problem more specifically. In this respect, a step toward
more robust obstacle detection has been made by monocular
depth estimation methods based on Convolutional Neural Net-
works (CNNs) [8], [9], [10]. Compared to standard VSLAM
strategies, these works train CNN-based model to quickly
compute depth maps from single image, which allows for fast
trajectory replanning. However, as any data-driven approach,
these depth models are biased with respect to appearance
domains and camera intrinsics. Most of the CNN architectures



2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2018

so far proposed address the more general task of pixel-wise
depth prediction and are not specifically devised for obstacle
detection. However, recent works [11] [12] have digressed
from this trail, proposing multi task network architectures
to jointly learning depth and some semantic property of the
images. These works show that the mutual information is
beneficial to both tasks.

Driven by the previous considerations, in this work we
propose a novel CNN architecture that jointly learns the task
of depth estimation and obstacle detection. We aim to get, at
the same time, the detection speed of CNNs approaches and
more robustness to scale and appearance changes, using the
joint learning of the depth distribution.

The combination of these two tasks gives them mutual
advantages: the depth prediction branch is informed with
object structures, which result in more robust estimations.
On the other hand, the obstacle detection model exploits the
depth information to predict obstacle distance and bounding
boxes more precisely. Our approach is similar to [11] and
[12], but is specifically devised for obstacle detection, and
not generic scene understanding, in order to achieve more
robustness to appearance changes. We show the comparison
with these two aforementioned methods in the experimental
part of the work. We demonstrate the detection and depth
estimation effectiveness of our approach in both publicly
available and brand new sequences. In these experiments, we
prove the robustness of the learned models in test scenarios
that differ from the training ones with respect to focal length
and appearance. In addition, to demonstrate the detection
advantages of the proposed detection system, we set up a full
navigation avoidance system in a simulated environment with
a MAV that detects obstacles and computes free trajectories
as it explores the scene.

II. RELATED WORK

The most straight-forward approaches to obstacle detection
and depth estimation involve RGB-D or stereo cameras.

Unfortunately, these sensors suffer from limited range,
in particular stereo systems, that require large baselines to
achieve acceptable performances [13].

For example, some authors explored push-broom stereo
systems on fixed-wing, high speed MAVs [14]. However, these
approaches require too large baselines for small rotary wing
MAVs. In addition, while short-range estimations still allows
safe collision avoidance, it sets an upper bound to the robot’s
maximum operative speed.

For all these reasons the study of alternative systems based
on monocular cameras becomes relevant. Even with the limi-
tation of monocular vision, our method can detect and localize
obstacles up to 20 meters and compute dense depth maps up
to 40 meters with a minor payload and space consumption.

Monocular obstacle detection can be achieved by dense
3D map reconstruction via SLAM or Structure from Motion
(SFM) based procedures [6], [15], [16]. These systems perform
a much more complex task though, and usually fail at high
speeds, since they reconstruct the environment from frame to
frame triangulation.

In addition, with standard geometric monocular systems it
is not possible to recover the absolute scale of the objects,
without using additional information. In [17] the scale is
recovered using the knowledge of the camera height from the
ground plane, while [18] uses a inference based method on the
average size of objects that frequently appear in the images
(e.g. cars), then optimize to the whole trajectory. The lack
of knowledge of the scale makes the obstacle avoidance a
difficult task. For this reason, some approaches exploit optical
information to detect proximity of obstacles from camera, or,
similarly, detect traversable space, or use hand-crafted image
features [19], [20], [21], [22], [23].

However, recently proposed deep learning-based solutions
have shown robustness to the aforementioned issues. These
models produce a dense 3D representation of the environ-
ment from a single image, exploiting the knowledge acquired
through training on large labeled datasets, both real-world and
synthetic [24], [8], [25], [9].

A few of these methods have been recently tested in obstacle
detection and autonomous flight applications. In [26], the au-
thors fine-tune on a self-collected dataset the depth estimation
model proposed by [24] and use it for path planning. In
[10] the authors exploit depth and normals estimations of a
deep model presented in [8] as an intermediate step to train
an visual reactive obstacle avoidance system. More recently,
[10] proposed a similar approach, regressing avoidance paths
directly from monocular 3D depth maps.

However, the aforementioned methods solve the task of
depth estimation and from it derive the obstacle map. Another
set of approaches use semantic knowledge to strengthen the
detection task. On this line the works of [27], [11] and [12]
train a multi task architecture for semantic scene understanding
that is reinforced by the joint learning of a depth estimation
task. However, these methods show better performances on
classes such as ”ground” or ”sky”. Our intuition is that current
depth estimators overfit their predictions on these classes,
as they tend to have more regular texture and geometric
structures.

On the contrary, in robotic applications we want to train
detection models to be as accurate as possible when estimating
obstacle distances.

Following this multi task approaches, we propose a novel
solution to the problem by jointly training a model for depth
estimation and obstacle detection. While each task’s output
comes from independent branches of the network, feature
extraction from their common RGB input is shared for both
targets. This choice improves both depth and detection es-
timations compared to single task models, as shown in the
experiments. An approach similar to ours, applied to 3D
bounding box detection, is presented in [28], where the authors
train a three-loss model, sharing the feature extraction layers
between the tasks.

In our system the obstacles bounding box regression part
is obtained modifying the architecture of [29] making it
fully convolutional. This allows for multiple bounding box
predictions with a single forward pass. In addition, we also
ask the obstacle detector to regress the average depth and the
corresponding estimate variance of the detected obstacles.
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Depth estimation is devised following the architecture of
[9], improved by taking into account the obstacle detection
branch. In particular, we correct the depth predictions by using
the mean depth estimates computed by the obstacle detec-
tion branch to achieve robustness with respect to appearance
changes. We prove the benefits of this strategy by validating
the model in test sequences with different focal length and
scene appearance. We compare our method to the ones of [11]
and [12], showing a considerable increase of performances
over these two baselines.

III. NETWORK OVERVIEW

Our proposed network is depicted in Figure 2. Given an
256 × 160 RGB input, features are extracted with a fine-
tuned version of the VGG19 network pruned of its fully
connected layers [30]. VGG19 weights are initialized on the
image classification task on the ImageNet dataset. Features are
then fed to two, task-dependent branches: a depth prediction
branch and a obstacle detector branch. The former is composed
by 4 upconvolution layers and a final convolution layer which
outputs the predicted depth at original input resolution. This
branch, plus the VGG19 feature extractor, is equivalent to
the fully convolutional network proposed in [9]. We optimize
depth prediction on the following loss:

Ldepth =
1

n

∑
i

d2i −
1

2n2
(
∑
i

di)
2

+
1

n

∑
i

[∇xDi +∇yDi] ·N∗
i

(1)

where di = logDi − logD∗
i , Di and D∗

i are respectively
the predicted and ground truth depths at pixel i, N∗

i is the
ground truth 3D surface normal, and ∇xDi, ∇yDi are the
horizontal and vertical predicted depth gradients. While the
first two terms correspond to the scale invariant log RMSE
loss introduced in [24], the third term enforces orthogonality
between predicted gradients and ground truth normals, aiming
at preserving geometrical coherence. With respect to the loss
proposed in [8], that introduced a L2 penalty on gradients
to the scale invariant loss, our loss performs comparably in
preliminary tests.

The obstacle detection branch is composed by 9 convolu-
tional layer with Glorot initialization. The detection methodol-
ogy is similar to the one presented in [29]: the input image is
divided into a 8×5 grid of square-shaped cells of size 32×32
pixels. For each cell, we train a detector to estimate:

• The (x, y) coordinates of the bounding box center
• The bounding box width w and height h
• A confidence score C
• The average distance of the detected obstacle from the

camera m and the variance of its depth distribution v

The resulting output has a 40 × 7 shape. At test time, we
consider only predictions with a confidence score over a

certain threshold. We train the detector on the following loss:

Ldet = λcoord
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where we set λcoord = 0.25, λobj = 5.0, λnoobj = 0.05,
λmean = 1.5, λvar = 1.25. Our network is trained simul-
taneously on both tasks. Gradients computed by each loss
are backpropagated through their respective branches and the
shared VGG19 multi-task feature extractor.

A. Exploiting detection to correct global scale estimations

The absolute scale of a depth estimation is not observable
from a single image. However, learning-based depth estima-
tors are able to give an accurate guess of the scale under
certain conditions. While training, these models implicitly
learn domain-specific object proportions and appearances. This
helps the estimation process in giving depth maps with correct
absolute scale.

As the relations between object proportions and global
scale in the image strongly depend on camera focal length,
at test time the absolute scale estimation are strongly biased
towards the training set domain and its intrinsics. For these
reasons, when object proportions and/or camera parameters
change from training to test, scale estimates quickly degrade.
Nonetheless, if object proportions stay roughly the same and
only camera intrinsics are altered at test time, it is possible
to employ some recovery strategy. If the size of a given
object is known, we can analytically compute its distance from
the camera and recover the global scale for the whole depth
map. For this reason, we suppose that the obstacle detection
branch can help recovering the global scale when intrinsics
change. We hypothesize that, while learning to regress obsta-
cles bounding boxes, a detector model implicitly learns sizes
and proportions of objects belonging to the training domain.
We can then evaluate estimated obstacle distances from the
detection branch and use them as a tool to correct dense depth
estimations. Let mj be the average distance of the obstacle j
computed by the detector, D̂j the average depth estimation
within the j-th obstacle bounding box, no the number of
estimated obstacles, then we compute the correction factor k
as:

k =
1
no

∑no

j mj

1
no

∑no

j D̂j

(3)

Finally, we calculate the corrected depth at each pixel i as
D̃i = kDi. To validate our hypothesis, in Section IV-C we
test on target domains with camera focal lengths that differ
from the one used for training.
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Fig. 2: Architecture of J-MOD2. Given an RGB input, features are extracted by the VGG19 module and then fed into the depth estimation
and obstacle detection branches to produce dense depth maps and osbtacles bounding boxes.

IV. EXPERIMENTS

A. Datasets

1) UnrealDataset: UnrealDataset is a self-collected syn-
thetic dataset that comprises of more than 100k images and 21
sequences collected in a bunch of highly photorealistic urban
and forest scenarios with Unreal Engine and the AirSim plugin
[31], which allows us to navigate a simulated MAV inside
any Unreal scenarios. The plugin also allows us to collect
MAV’s frontal camera RGB images, ground truth depth up to
40 meters and segmentation labels. Some samples are shown
in Figure 4(a). We postprocess segmentation labels to form
a binary image depicting only two semantic classes: obstacle
and non-obstacle by filtering these data with corresponding
depth maps, we are finally able to segment obstacles at up to
20 meters from the camera and get ground truth labels for the
detection network branch (Fig. 3). MAV’s frontal camera has
a horizontal field of view of 81,5 degrees.

Fig. 3: Given depth and segmentation ground truth, we compute
obstacle bounding boxes for each training image. We evaluate only
obstacles in a 20 meters range.

2) Zurich Forest Dataset: Zurich Forest Dataset consist of
9846 real-world grayscale images collected with a hand-held
stereo camera rig in a forest area. Ground truth depth maps
are obtained for the whole dataset through semi-global stereo
matching [32]. We manually draw 357 bounding boxes on
a subset of 64 images to provide obstacle ground truth and
evaluate detection in a real-world scenario.

B. Training and testing details

As baselines, we compare J-MOD2 with:
• The depth estimation method proposed in [9].

• Our implementation of the multi-scale Eigen’s model [8].
• A simple obstacle detector, consisting of our proposed

model, trained without the depth estimation branch.
• Our implementation of the multi-modal autoencoder

(later referred as Full-MAE) proposed by Cadena et al.
[11].

• Our implementation of the joint refinement network (later
referred as JRN) proposed by Jafari et al. [12].

We train J-MOD2 and all the baseline models on 19 sequences
of the UnrealDataset. We left out sequences 09 and 14 for
testing. All the approaches have been trained on a single
NVIDIA Titan X GPU. Training is performed with Adam
optimizer by setting a learning rate of 0.0001 until conver-
gence. The segmentation tasks for the Full-MAE and the JRN
baselines are trained to classify two classes: ”obstacle” and
”not obstacle”. The JRN is trained to fuse and refine depth
estimations from our implementation of [8] with segmentation
estimates from the SotA segmentation algorithm of Long et
al. [33], as suggested by the authors, with the latter retrained
on the 2-class segmentation problem of the UnrealDataset.

At test time, all baseline methods are tested using only RGB
inputs. For both methods, we then infer obstacle bounding
boxes from their depth and segmentation estimates applying
the same procedure described in Figure 3, allowing direct
comparison with our method. All the approaches are tested
on the test sequences of the UnrealDataset and on the whole
Zurich Forest Dataset. Note that, while testing on the latter,
we do not perform any finetuning for both our method and
the baselines.

At runtime, estimations require about 0.01 seconds per
frame on a NVIDIA Titan X GPU. We also test J-MOD2 on
a NVIDIA TX1 board, to evaluate its portability on a on-
board embedded system, measuring an average forward time
of about 0.28 seconds per frame. The code for J-MOD2 and
all the baseline methods is available online1

To evaluate the depth estimator branch performance, we
compute the following metrics:

• Linear RMSE and Scale Invariant Log RMSE ( 1
n

∑
i d

2
i−

1
n2 (

∑
i di)

2, with di = log yi − log y∗i ) on the full depth
map.

1http://isar.unipg.it/index.php?option=com content&view=article&id=47&
catid=2&Itemid=188

http://isar.unipg.it/index.php?option=com_content&view=article&id=47&catid=2&Itemid=188
http://isar.unipg.it/index.php?option=com_content&view=article&id=47&catid=2&Itemid=188
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(a) RGB Input (b) Depth GT (c) Depth Estimation (d) Obstacle GT (e) Detected Obstacles

Fig. 4: J-MOD2 qualitative results on the UnrealDataset.
DEPTH [9] DETECTOR EIGEN [8] FULL-MAE [11] JRN [12] J-MOD2

RMSE Full Depth Map 3.653 - 3.785 7.566 7.242 3.473 Lower
Sc.Inv RMSE Full Depth Map 0.042 - 0.043 0.124 0.110 0.036 is

Depth RMSE on Obs.(Mean/Var) 1.317 / 37.124 - 1.854 / 50.71 5.355/180.67 2.938 / 87.595 1.034 / 29.583 better
Detection RMSE on Obs.(Mean/Var) - 2.307/ 59.407 - - - 1.754 / 46.006

Detection IOU - 63.11% - 32.58% 44.19% 66.58% Higher
Detection Precision - 72.15% - 75.53% 54.37% 78.64% is

Detection Recall - 90.05% - 44.38% 49.55% 90.85% better

TABLE I: Results on the UnrealDataset. For the depth estimation task we report full depth map RMSE and scale invariant errors, obstacle-
wise depth and detection branches statistics (mean/variance) estimation errors and detector’s IOU, precision and recall.

• Depth RMSE on Obstacles (Mean/Variance): For each
ground truth obstacle, we compute its depth statistics
(mean and variance) and we compare them against the
estimated ones by using linear RMSE.

For the detector branch, we compute the following metrics:
• Detection RMSE on Obstacles (Mean/Variance):For each

detected obstacle, we compare its estimated obstacle
depth statistics (mean and variance) with the closest
obstacle ones by using linear RMSE.

• Intersection Over Union (IOU)
• Precision and Recall.

C. Test on UnrealDataset

We report results on Table I. For [9] and [8] we report
results only on depth-related metrics, as they do not perform
any detection. Results confirm how J-MOD2 outperforms all
the other baselines in all metrics, corroborating our starting
claim: object structures learned by the detector branch improve
obstacles depth estimations of the depth branch. At the same
time, localization and accuracy of the detected bounding boxes
improve significantly compared to our single-task obstacle
detector. We achieve good performances on both urban and
forest sequences, without any significant discrepancy due to
different depicted objects and contexts. We report qualitative
results on Figure 4. According to the results on the NYU
benchmark reported in [12], we expect JRN to outperform [8]
on depth metrics, but this is not observed in this experiment.
Our intuition is that the JRN segmentation network deals
with a more challenging scenario, since the labels to the
different objects are simply ”obstacle”, ”not-obstacle” while
in the original NYU there were specific labels for each object
category. This makes this task for JRN similar to a semi-
supervised learning problem, that is implicitly more difficult.
Our system relies on a obstacle detector, that is a much simpler
task to train, and therefore has an edge in this scenario.

To validate our proposed depth correction strategy intro-
duced in Section III-A, we also simulate focal length alter-
ations by cropping and upsampling a central region of the
input images of the UnrealDataset. We evaluate performances
on different sized crops of images on the sequence-20, one of
the training sequences, comprising of more than 7700 images.
We choose to stage this experiment on a training sequence
to minimize appearance-induced error and make evident the
focal-length-induced error. We report results on Table II.
When no crop is applied, camera intrinsics are unaltered
and appearance-induced error is very low, as expected. As
correction is applied linearly on the whole depth map, when
scale-dependant error is absent or low, such correction worsen
estimations by 19% on non-cropped images. A 230×144 crop
simulates a slightly longer focal length. All metrics worsen,
as expected, and correction still cause a 15% higher RMSE
error. When 204×128 crops are evaluated, correction starts to
be effective, improving performances by 1, 45% with respect
to the non-corrected estimation. On 154×96 crops, correction
leads to a 23% improvement. On 128 × 80 crops, correction
improves performance by 25%. We also observe how the
detection branch outperforms the depth estimation branch on
obstacle distance evaluation as we apply wider crops to the
input. This results uphold our hypothesis that detection branch
is more robust to large mismatches between training and test
camera focal lengths and can be used to partially compensate
the induced absolute scale estimation deterioration.

D. Test: Zurich Forest Dataset

In this experiment we test our models, trained on syn-
thetically generated data, on a real world scenario without
performing any finetuning, to verify the generalization capa-
bilities of the models when tested on unseen domains. Depth
metrics (Linear RMSE and Scale Invariant MSE) refer to the
whole dataset, while all the other metrics refer to the labelled
subset, as described in Section IV-A2. Results are reported
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ORIGINAL SIZE CROP 230X144 CROP 204X128 CROP 154X96 CROP 128X80
NoCor Cor NoCor Cor NoCor Cor NoCor Cor NoCor Cor

RMSE Full Depth Map 2.179 2.595 2.632 3.042 4.052 3.991 8.098 6.234 10.825 8.045
Sc. Inv RMSE Full Depth Map 0.096 0.115 0.121 0.134 0.173 0.164 0.274 0.217 0.305 0.250
Depth RMSE on Obs.(Mean) 0.185 0.676 1.293 1.458 2.465 2.219 4.865 3.583 6.148 4.485

Detector RMSE on Obs.(Mean) 0.404 1.079 1.998 4.124 5.450

TABLE II: Results of J-MOD2 on the sequence-20 of the UnrealDataset on different-sized central crops. For each crop, we report in bold
the better estimation between unchanged (labeled as NoCor) and corrected depths (labeled as WithCor).

(a) RGB Input (b) Depth GT (c) Non Corrected Depth Es-
timation

(d) Corrected Depth Estima-
tion

(e) Detected Obstacles

Fig. 5: J-MOD2 qualitative results on the Zurich Forest Dataset.

DEPTH [9] DETECTOR EIGEN [8] FULL-MAE [11] JRN [12] J-MOD2

Cor NoCor Cor NoCor Cor NoCor Cor NoCor Cor NoCor Cor NoCor
RMSE - 12.421 - - - 14.640 - 17.581 - 10.114 9.009 12.569

Sc. Inv RMSE - 0.873 - - - 1.025 - 1.711 - 0.702 0.429 0.954
Depth RMSE on Obs.(Mean)∗ - 4.378 - - - 8.060 - 10.488 - 4.783 4.510 4.847

Detector RMSE on Obs.(Mean)∗ - 6.277 - - - 3.702
Detector IOU∗ - 14.4% - 2.13% 9.19% 26.32%

Detector Precision∗ - 25.32% - 11.4% 13.18% 48.36%
Detector Recall∗ - 10.80% - 1.12% 6.72% 20.49%

TABLE III: Results on the Zurich Forest Dataset. Metrics marked with a ∗ symbol are evaluated on a subset of 64 images with ground
truth bounding boxes.

on Table III. J-MOD2 outperforms all baselines in almost all
metrics, which suggests improved generalization capabilities.
Furthermore, we show how the correction factor introduced
in Section III-A improves J-MOD2 depth estimation by about
28% on the RMSE metric, reducing the scale-induced errors
on the estimates caused by the different camera parameters.
We report qualitative results on Figure 5. The performance of
all the approaches are lower with respect to the UnrealDataset.
This is expected, since the synthetic textures and general
appearance are different from the ones in this dataset. In
addition, the camera characteristics do not match the ones of
the UnrealDataset sequences.

E. Qualitative analysis of the multi-task interaction
Besides the advantages given by J-MOD2 in terms of nu-

merical performance, in the following, we qualitatively discuss
the benefits of our joint architecture compared to its single task
counterparts.

Figure 6 shows a comparison between the estimated obstacle
bounding boxes of the detector-only architecture and the
J-MOD2 ones. It can be observed that, by exploiting the
auxiliary depth estimation task, J-MOD2 learns a detector that
is aware of scene geometry. This results in an architecture that
models a better concept of obstacle and, thus, is more precise
in detecting what really determines a threat for the robot.
Hence, it avoids wrong detections, such as ground surfaces

(a) Single-task detector (b) J-MOD2

(c) Single-task detector (d) J-MOD2

Fig. 6: For each row, we compare J-MOD2 obstacle detections
with the detector-only architecture. Ground truth bounding boxes are
reported in green, predictions in red. In the first example (first row),
the single-task detector erroneously detects a false obstacle on the
ground. Similarly, in the second example (second row), the single-
task wrongly considers the whole building on the left as an obstacle
while only its closest part is an immediate threat for robot navigation.

(see Figures 6(a) and 6(b)), or full buildings of which only
the closest part would constitutes an immediate danger for
navigation (see Figures 6(c) and 6(d)).
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(a) RGB image (b) Depth GT (c) Depth-only (d) J-MOD2

(e) RGB image (f) Depth GT (g) Depth-only (h) J-MOD2

Fig. 7: For each row, we compare J-MOD2 depth maps with the ones
predicted by the depth-only architecture. J-MOD2 estimations are
sharper and more defined. Consider, for example, the bollard and the
lamppost in Figures 7(a)-7(d) or the ground surface in Figures 7(e)-
7(h), whose depth is wrongly estimate by the depth-only estimator.

Similarly, depth estimation branch of the proposed J-MOD2

approach takes advantage from the obstacle detector task to
refine the estimation of the scene geometry. The representation
learned by the J-MOD2 depth estimation stream contains also
visual clues about object shapes and proportions, which gives
it the capability to integrate object semantics when estimating
the scene depths. Compared to the depth-only architecture
[9], our approach predicts sharper and more precise depth
maps. This is more evident if we consider very thin elements
and objects that could be mistaken for ground surfaces (e.g.
consider the lamppost and the bollard in Figures 7(a)7(d) or
the ground estimates in Figures 7(e)7(h)).

F. Navigation experiments

We further validate J-MOD2 effectivness for obstacle de-
tection applications by setting up a simulated full MAV navi-
gation system. We depict the system architecture in Figure 8.
We create a virtual forest scenario on Unreal Engine, slightly
different from the one used for dataset collection. The line-
of-sight distance between the takeoff point and the designed
landing goal is about 61 meters. Trees are about 6 meters tall
and spaced 7 meters from each other, on average. An aerial
picture of the test scenario is reported in Figure 8.

A simulated MAV is able to navigate into the scenario and
collect RGB images from its frontal camera. We estimate depth
from the captured input and we employ it to dynamically
build and update an Octomap [34]. We plan obstacle-free
trajectories exploiting an off-the shelf implementation of the
RRT-Connect planner [35] from the MoveIt! ROS library,
which we use to pilot the simulated MAV at a cruise speed
of 1m/s. Trajectories are bounded to a maximum altitude of
5 meters. As a new obstacle is detected along the planned
trajectory, the MAV stops and a new trajectory is computed.
The goal point is set 4 meters above the ground. For each
flight, we verify its success and measure the flight distance
and duration. A flight fails if the MAV crashes or gets stuck,
namely not completing its mission in a 5 minute interval. We
compare J-MOD2 with the Eigen’s baseline, both trained on
the UnrealDataset.

While planning, we add a safety padding on each Octomap
obstacles. This enforces the planner to compute trajectories
not too close to the detected obstacles. For each estimator, we
set this value equal the average RMSE obstacle depth error on

the UnrealDataset test set, as reported in Table I: 1.034 meters
for J-MOD2, 1.854 meters for Eigen. We refer to this value
as a reliability measure of each estimator; the less accurate
an estimator is, the more padding we need to guarantee safe
operation. We perform 15 flights for each depth estimator and
report their results on Table IV.

EIGEN [8] J-MOD2

Success rate 26,6% 73,3%
Failure cases 8 stuck / 3 crash 2 stuck / 2 crash

Avg. flight time 147s 131s
Std. Dev. Flight Time 18.51s 12.88s
Avg. flight distance 78m 77m

Std. Dev. Flight Distance 4.47m 9.95m

TABLE IV: Results of the navigation experiment. We compare the
navigation success rate when using J-MOD2 and Eigen’s approach
as obstacle detection systems.

J-MOD2 clearly performs better in all metrics, proving that
how our method is effective for monocular obstacle detection.
By analyzing failure cases, for 6 times the MAV using Eigen
as obstacle detector got stuck in the proximity of goal point
because ground was estimated closer than its real distance,
causing planner failure in finding an obstacle-free trajectory
to the goal. J-MOD2 failures are mostly related on erratic
trajectory computation which caused the MAV to fly too close
to obstacles, causing lateral collisions or getting stuck in
proximity of tree’s leaves.

V. CONCLUSION AND FUTURE WORK

In this work, we proposed J-MOD2, a novel end-to-end deep
architecture for joint obstacle detection and depth estimation.
We demonstrated its effectiveness in detecting obstacles on
synthetic and real-world datasets. We tested its robustness to
appearance and camera focal length changes. Furthermore, we
deployed J-MOD2 as an obstacle detector and 3D mapping
module in a full MAV navigation system and we tested it on
a highly photo-realistic simulated forest scenario. We showed
how J-MOD2 dramatically improves mapping quality in a
previously unknown scenario, leading to a substantial lower
navigation failure rate than other SotA depth estimators. In
future works, we plan to further improve robustness over
appearance changes, as this is the major challenge for the
effective deployment of these algorithms in practical real-
world scenarios.

REFERENCES

[1] S. Grzonka, G. Grisetti, and W. Burgard, “A fully autonomous indoor
quadrotor,” IEEE Transactions on Robotics, vol. 28, no. 1, pp. 90–100,
2012.

[2] F. Fraundorfer, L. Heng, D. Honegger, G. H. Lee, L. Meier, P. Tanskanen,
and M. Pollefeys, “Vision-based autonomous mapping and exploration
using a quadrotor mav,” in Intelligent Robots and Systems (IROS), 2012
IEEE/RSJ International Conference on. IEEE, 2012, pp. 4557–4564.

[3] A. Bachrach, S. Prentice, R. He, P. Henry, A. S. Huang, M. Krainin,
D. Maturana, D. Fox, and N. Roy, “Estimation, planning, and mapping
for autonomous flight using an rgb-d camera in gps-denied environ-
ments,” The International Journal of Robotics Research, vol. 31, no. 11,
pp. 1320–1343, 2012.

[4] M. W. Achtelik, S. Lynen, S. Weiss, M. Chli, and R. Siegwart, “Motion-
and uncertainty-aware path planning for micro aerial vehicles,” Journal
of Field Robotics, vol. 31, no. 4, pp. 676–698, 2014.



8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2018

Fig. 8: Architecture of the full navigation pipeline (on the left) and a aerial picture of the test scenario (on the right). For each RGB image
captured by the MAV frontal camera, a depth map is computed and converted into a point cloud used to update the 3D map and compute
an obstacle-free trajectory. The MAV then flies along the computed trajectory until a new obstacle is detected.

[5] D. Scaramuzza, M. C. Achtelik, L. Doitsidis, F. Friedrich, E. Kos-
matopoulos, A. Martinelli, M. W. Achtelik, M. Chli, S. Chatzichristofis,
L. Kneip, et al., “Vision-controlled micro flying robots: from system
design to autonomous navigation and mapping in gps-denied environ-
ments,” IEEE Robotics & Automation Magazine, vol. 21, no. 3, pp.
26–40, 2014.
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